New Sesquiterpenoids from Artemisia anomala

by Ke Zan^a)^b), She-Po Shi^a), Qiang Fu^a), Xiao-Qing Chen^b), Si-Xiang Zhou^a), Mei-Tian Xiao^a)^c), and Peng-Fei Tu^{*a})

^a) State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, P. R. China (phone/fax: + 86-10-82802750; e-mail: pengfeitu@vip.163.com)

^b) School of Traditional Chinese Medicine, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China

^c) Department of Chemical and Pharmaceutical Engineering, Huaqiao University, Quanzhou 362021, P. R. China

One new guaianolide, anomalactone A (1), and one new norcadinane sesquiterpene, anomallenodiol (2), along with two germacranolides, anomalactones B and C (3 and 4, resp.), were isolated from the aerial part of *Artemisia anomala* S. MOORE. Their structures were determined on the basis of extensive spectroscopic analyses.

Introduction. – Artemisia anomala S. MOORE (Chinese name 'Nan-Liu-Ji-Nu'), a perennial herbaceous plant belonging to the Compositae family, is commonly used in traditional Chinese medicine as an analgesic, antibiotic, and wound-curing agent [1]. Previous phytochemical investigations led to the isolation of flavonoids, coumarins, and sesquiterpene lactones from A. anomala [2–7]. Due to the promising bioactivities of this plant, a systematic phytochemical investigation on A. anomala has been carried out. Here, we report the isolation and structural elucidation of the four new sesquiterpenoids 1-4 from A. anomala.

Results and Discussion. – Anomalactone A (1) was obtained as a colorless gum, and the molecular formula was established as $C_{15}H_{18}O_4$ (seven degrees of unsaturation) by high-resolution electrospray ion mass spectrometry (HR-ESI-MS; *m/z* 263.1276 ([*M* + H]⁺; calc. 263.1278)). The ¹³C-NMR spectrum (see *Table 2*) exhibited 15 C-atom signals, which were classified by a DEPT experiment into those of two Me, four CH₂, three CH groups (including those of two O-bearing CH groups at δ (C) 75.9 and 78.6), and of six quaternary C-atoms (including a lactone signal at δ (C) 169.6, a C=O signal at δ (C) 204.9, and three olefinic C-atom signals at δ (C) 142.4, 169.5, and 138.3,

^{© 2010} Verlag Helvetica Chimica Acta AG, Zürich

respectively, which suggested a sesquiterpenoid skeleton. The ¹H- and ¹³C-NMR spectra of **1** were similar to those of the known compound $2\alpha,4\alpha$ -dihydroxy-7 α H,8 α H,10 α H-guaia-1(5),11(13)-dien-12,8 β -olide isolated from *Pulicaria crispa* [8]. The major difference in their NMR spectra was the presence of a C=O group resonance at δ (C) 204.9 in **1** instead of the signal of an oxygenated CH group in the known compound. The C=O group was determined to be C(2)=O by the HMBCs from CH₂(3) to C(2) and from H–C(10) to C(2) (*Fig. 1*). The assignments of all H- and C-atoms for **1** were accomplished by HSQC, ¹H,¹H-COSY, and HMBC experiments (*Tables 1* and 2). The above data suggested that the structure of **1** is 2-oxo-4-hydroxyguaia-1(5),11(13)-diene-12,8-olide. The relative configuration of **1** was established by a NOESY experiment, in which the correlations from H–C(7) to H–C(8) and H_{α}–C(6) indicated that Me(14) and Me(15) are β -oriented, whereas H–C(7) and H–C(8) are α -oriented (*Fig. 2*). Therefore, the structure of compound **1** was established as 4α -hydroxy-2-oxo-7 α H,8 α H,10 α H-guaia-1(5),11(13)-dien-12,8 β -olide.

Fig. 1. Key HMBC ($H \rightarrow C$) and ${}^{1}H, {}^{1}H-COSY$ (---) correlations of 1-4

Anomallenodiol (2) was obtained as a colorless gum. The molecular formula $C_{14}H_{22}O_3$, with four degrees of unsaturation, was deduced on the basis of HR-ESI-MS (m/z 239.1637 ($[M + H]^+$; calc. 239.1642)). The ¹³C-NMR (DEPT) data revealed the presence of three Me, four CH₂, and three CH groups, and four quaternary C-atoms, including an α,β -unsaturated CO group and a tetrasubstituted C=C moiety. The ¹H-NMR spectrum of **2** exhibited a Me(15) *singlet* at $\delta(H)$ 1.22 (s), two Me *doublets* at $\delta(H)$ 0.92 (d, J = 7.0, Me(12)) and 1.06 (d, J = 7.0, Me(13)), and three CH signals at $\delta(H)$ 2.53 – 2.56 (m, H-C(6)), 2.16 – 2.20 (m, H-C(11)), and 3.88 (s, H-C(4)). The overall ¹H- and ¹³C-NMR spectra of **2** were similar to those of oxyphyllenodiol B [9]. The major differences between the two compounds are the configurations of C(3) and C(4). The relative configuration of **2** was deduced from the NOESY spectrum. The

Table 1. ¹	H-NMR Data (500 MHz) <i>of</i> 1	I-4(1,3, and 4 in CDCI ₃ , 2 in CD ₃ and HM	OH). δ in ppm; J in Hz. Assignments were 3C experiments.	corroborated by ¹ H, ¹ H-COSY, HSQC,
Position	1	2	3	4
1		$2.22 \ (ddd, J = 1.0, 6.5, 12.5),$	2.43 (td, J = 2.5, 13.5), 2.55 - 2.59 (m)	
7		2.52 (aa, J = 0.0, 12.0) 1.60 $(dd, J = 2.0, 9.0)$,	$1.38-1.42 \ (m), \ 2.15-2.19 \ (m)$	$3.48 \ (dd, J = 8.0, 13.0),$
ç		$1.68 \ (dd, J = 2.0, 9.0)$		$2.70 \ (dd, J = 8.0, 13.0)$
0 4	(c.01 = f, b) / c.7	3,88 (s)	(c.01, 0.2 = 2.0, 10.3)	4.05(aa, J = 5.0, 5.0)
s.			$1.44 \ (dd, J = 13.0, 13.0),$	4.76 (d, J = 10.0)
			$2.52 \ (dd, J = 4.0, 13.0)$	
9	2.70 (dd, J = 1.0, 12.0),	2.53-2.56(m)	$4.79 \ (ddd, J = 4.0, 7.0, 13.0)$	5.36 (d, J = 10.0)
	$2.80 \ (dd, J = 5.0, 12.0)$			
7	$3.41 - 3.46 \ (m)$	$2.00 \ (ddd, J=2.0, 6.0, 12.5)$	3.39 - 3.43 (m)	
8	$4.65 \ (td, J = 4.0, 12.0)$	$2.30 \ (dd, J = 6.0, \ 10.0),$	$1.73 \ (ddd, J = 4.5, 8.0, 14.5),$	$2.90 \ (dd, J = 6.0, 13.5),$
		$2.50 \ (dd, J = 2.0, 9.0)$	$2.10 \ (ddd, J = 5.0, 9.0, 14.5)$	2.07 - 2.10 (m)
9	$1.90 - 1.97 \ (m),$		$4.10 \ (dd, J = 4.5, 8.0)$	$2.25 \ (dd, J = 5.5, 8.5),$
	2.11 - 2.15 (m)			$3.05 \ (dd, J = 6.5, 12.5)$
10	2.79-2.82 (m)			
11		2.16-2.20 (m)		
12		$0.92 \ (d, J = 7.0)$		
13	6.36 (d, J=3.0), 5.71 (J, I-3.0)	1.06 $(d, J = 7.0)$	6.23 (d, J = 3.0), 5.56 (d, J = 3.0)	4.79 $(d, J = 13.0), 4.87 (d, J = 13.0)$
14	1.17 (d, J = 11.5)		5.07(s), 5.21(s)	5.67 (d, J = 1.5), 5.76 (d, J = 0.5)
15 2'	1.50(s)	1.22 (s)	1.33 (s)	1.78 (br. s) 2.11 (s)

2002

Helvetica Chimica Acta – Vol. 93 (2010)

Position	1	2	3	4
1	142.4	21.3	29.5	199.8
2	204.9	31.1	26.3	46.4
3	50.8	72.0	68.8	74.6
4	75.9	74.3	57.3	141.7
5	169.5	160.4	40.7	123.5
6	24.9	42.7	78.2	79.8
7	41.8	23.7	40.6	168.6
8	78.6	36.2	33.8	24.3
9	35.5	202.4	72.4	32.6
10	28.2	133.7	150.1	148.8
11	138.3	30.8	139.1	123.5
12	169.6	22.1	169.8	172.7
13	123.2	19.7	120.1	55.5
14	20.1	25.1	113.1	124.5
15	26.4		17.7	10.2
1'				170.5
2'				20.7

Table 2. ¹³C-NMR Data (125 MHz) of $1-4(1, 3, and 4 in CDCl_3, 2 in CD_3OH)$. δ in ppm. Assignments were corroborated by ¹H,¹H-COSY, HSQC, and HMBC experiments.

NOE interactions of Me(15) with Me(13) and Me(12), and of H-C(4) with $H_a-C(1)$ (*Fig. 2*) indicated that Me(15) and H-C(4) are α -oriented, and H-C(6) is β -oriented. Therefore, compound **2** was established as $(4R^*, 5R^*, 6S^*)$ -5,6-dihydroxy-4-isopropyl-6-methyl-3,4,5,6,7,8-hexahydronaphthalen-1(2*H*)-one.

Fig. 2. The key NOESY $(H \rightarrow H)$ correlations of 1 and 2

Anomalactone B (**3**) was obtained as a colorless gum. The molecular formula $C_{15}H_{20}O_4$, with six degrees of unsaturation, was deduced from HR-ESI-MS (m/z 265.1428 ($[M + H]^+$; calc. 265.1434). The IR spectrum showed strong absorption bands for a C=O group (1759 cm⁻¹) and of a OH group (3449 cm⁻¹). The ¹H-NMR (*Table 1*) spectrum exhibited a Me(15) *singlet* at $\delta(H)$ 1.33 (s), and four olefinic H-atom signals due to two exocyclic C=C bonds at $\delta(H)$ 6.23 (d, J = 3.0) and 5.56 (d, J = 3.0), 5.07 (s) and 5.21 (s). The ¹³C-NMR spectrum (*Table 2*) displayed 15 C-atom signals which were classified by a DEPT experiment into those of one Me, six CH₂, four CH groups (including three O-bearing CH group signals at $\delta(C)$ 68.8, 78.2 and 72.4, resp.), and of four quaternary C-atoms (including a lactone signal at $\delta(C)$ 169.8, an O-bearing

quaternary C-atom signal at $\delta(C)$ 57.3, and two olefinic C-atom signals at $\delta(C)$ 139.1 and 150.1). Comparison of the above data with those of deoxyperoxyparthenolide [10] revealed that both of them have the same germacranolide skeleton. The major differences of the two compounds are the positions of a OH and of an epoxy group. The HMBCs of **3** from CH₂(1), H-C(7), H-C(8), and CH₂(14) to C(9) at δ (C) 72.4 suggested that C(9) is substituted by a OH group. The epoxy linkage between C(3) $(\delta(C) 68.8)$ and C(4) $(\delta(C) 57.3)$ was determined by the relative upfield chemical shift and the HMBCs of $CH_2(1)$, $CH_2(5)$, and Me(15) to C(3), and $CH_2(2)$, H-C(6), and Me(15) to C(4), which were consistent with its molecular formula and the number of degrees of unsaturation (Fig. 1). The relative configuration of 3 was determined by the analysis of its NOESY spectrum and the Chem3D molecular modeling studies. The NOESY correlations of H-C(3) with Me(15), H-C(6), H-C(7), and H-C(9)suggested that H-C(3), H-C(6), H-C(7), H-C(9), and Me(15) are on the same side of the molecule. Two possible conformations of $\mathbf{3}$ were predicted by the computergenerated models (ChemBio3D Ultra 11.0 GAMESS Minimize energy). The coupling constants for **3** between H-C(5) and H-C(6) $(J(5\alpha,6) = 4.0, J(5\beta,6) = 13.0)$ requires a dihedral angle of *ca*. 60° between $H_a - C(5)$ and H - C(6), and close to 180° between H_{β} -C(5) and H-C(6). The structure of **3a** meets these requirements (*Fig. 3*). Thus, compound **3** was identified as 3β , 4β -epoxy- 9β -hydroxygermacra-10(14), 11(13)-dien-12,6 β -olide.

Fig. 3. Two possible configurations of 3, which resulted from molecular modeling. Key NOESY $(H \rightarrow H)$ correlations of 3 were indicated.

Anomalactone C (4) was obtained as a colorless gum. The molecular formula $C_{17}H_{20}O_6$, with eight degrees of unsaturation, was deduced from HR-ESI-MS (*m/z* 343.1157 ([*M* + Na]⁺; calc. 343.1152). The ¹H-NMR spectrum of 4 was nearly identical with that of 13-bis-*O*-desacetyl-1-oxoafraglaucolide [11], indicating that both of them share a germacranolide skeleton, except an AcO group of 4 located at C(13), which was evident from the presence of chemical-shift values of Me(2') (δ (H) 2.11), and C(1') (δ (C) 170.5) and C(2') (δ (C) 20.7), and the HMBCs of Me(2') with C(13), and CH₂(13) with C(1'). Thus, compound 4 was established as 3-*O*-desacetyl-1-oxoafraglaucolide. The ¹H- and ¹³C-NMR signals of 4 were fully assigned by means of HSQC and HMBC experiments (*Fig. 1*).

Experimental Part

General. Semi-prep. HPLC: Waters 600 instrument with ODS column (Agilent Technologies 250 × 9.4 mm, i.d., 5 µm) and C_{18} guard column with a 2996 photodiode array detector. Column chromatography (CC): silica gel (SiO₂; 200–300 mesh, Qingdao Haiyang Chemical works) and ODS (Merck). Optical rotations: Perkin-Elmer 243B digital polarimeter. UV Spectra: TU-1901 spectrometer. IR Spectra: Nexus-470 FT-IR (Nicolet) spectrometer. NMR Spectra: Inova 500 spectrometer, operating at 500 MHz for ¹H and 125 MHz for ¹³C; the chemical shifts in δ [ppm] with TMS as internal standard and CHCl₃ as solvent. HR-ESI-MS: Brucker APEX IV FT-MS spectrometer in positive-ion mode.

Plant Material. The aerial parts of *A. anomala* were collected in Hangzhou Zhejiang, P. R. China in July, 2008. The plant material was authenticated by *P.-F. T.* A voucher specimen was deposited with the Herbarium of the Peking University Modern Research Center for Traditional Chinese Medicine (No. CM20071215).

Extraction and Isolation. Dried aerial parts (300 kg) of *A. anomala* were chopped and extracted three times with 95% EtOH. After evaporation of the solvent under reduced pressure, the residue was suspended in H₂O and extracted with petroleum ether and CHCl₃, successively. The residue of the CHCl₃ layer (1000 g) was fractionated by SiO₂ CC using a gradient of CHCl₃ and MeOH to give 72 fractions. *Frs.* 30-35 were subjected to *ODS* open CC (MeOH/H₂O 40:60 to 80:20) to afford subfractions 1-4. *Subfr.* 1 was separated by semi-prep. HPLC (MeOH/H₂O 45:55) to afford **2** (4 mg) and **3** (3 mg), *Subfr.* 2 was separated by semi-prep. HPLC (MeOH/H₂O 40:60), and continuously purified by semi-prep. HPLC (MeOH/H₂O 40:60) and then purified by semi-prep. HPLC (MeCN/H₂O 30:70) to afford **1** (4 mg).

Anomalactone A (= 4α -Hydroxy-2-oxo-7 α H,8 α H,10 α H-guaia-1(5),11(13)-dien-12,8 β -olide = (3aR*,5R*,8S*,9aR*)-3,3a,4,5,6,8,9,9a-Octahydro-5-hydroxy-5,8-dimethyl-3-methylideneazuleno[6,5-b]furan-2,7-dione; **1**). Colorless gum. [α]₂₀²² = -38.0 (c = 0.1, MeOH). IR (KBr): 3432, 2962, 2931, 2873, 1763, 1701, 1647, 1462, 1376, 1335, 1274, 1202, 1169, 1120, 1092, 1057, 997, 957, 853, 813, 755, 668, 630, 594. ¹H- and ¹³C-NMR: Tables 1 and 2, resp. HR-ESI-MS: 263.1276 ([M + H]⁺, C₁₅H₁₈O⁺₄; calc. 263.1278).

Anomallenodiol (=(4R*,5R*,6S*)-3,4,5,6,7,8-Hexahydro-5,6-Dihydroxy-6-methyl-4-(propan-2-yl)naphthalen-1(2H)-one; **2**). Colorless gum. [α]_D²² = +18.0 (c = 0.1, MeOH). IR (KBr): 3406, 2958, 2874, 1655, 1377, 1262, 1123, 1023. ¹H- and ¹³C-NMR: *Tables 1* and 2, resp. HR-ESI-MS: 239.1637 ([M + H]⁺, $C_{14}H_{23}O_{3}^{\pm}$; calc. 239.1642).

Anomalactone B (=3 β ,4 β -Epoxy-9 β -hydroxygermacra-10(14),11(13)-dien-12,6 β -olide = (1aS*,5-S*,6aS*,9aS*,10aR*)-Decahydro-5-hydroxy-10a-methyl-4,7-dimethylideneoxireno[8,9]cyclodeca[1,2-b]furan-8(2H)-one; **3**). Colorless gum. [α]_{12}^{22} = +59.0 (c = 0.1, MeOH). IR (KBr): 3449, 2964, 2925, 2857, 1759, 1664, 1639, 1447, 1384, 1334, 1261, 1168, 1106, 1068, 1028, 986, 944, 913, 866, 801, 733. ¹H- and ¹³C-NMR: *Tables 1* and 2, resp. HR-ESI-MS: 265.1428 ([M + H]⁺, C₁₅H₂₁O₄⁺; calc. 265.1434).

Anomalactone C (=3-O-Desacetyl-1-oxoafraglaucolide = [(9S*,10E,11aR*)-2,4,5,6,7,8,9,11a-Octahydro-9-hydroxy-10-methyl-6-methylidene-2,7-dioxocyclodeca[b]furan-3-yl]methyl Acetate; **4**). Colorless gum. [α]²⁵₂ = +15.0 (c = 0.1, MeOH). IR (KBr): 3482, 2966, 2930, 1755, 1668, 1430, 1369, 1310, 1230, 1178, 1135, 1087, 1027, 989, 916, 732. ¹H- and ¹³C-NMR: *Tables 1* and 2, resp. HR-ESI-MS: 343.1157 ([M+Na]⁺, C₁₇H₂₀NaO⁺₆; calc. 343.1152).

This work was supported by the grant from *The National Natural Science Foundation of China* (No. 30973629).

REFERENCES

- Jiangsu New Medical College, 'Dictionary of Traditional Chinese Materia Medica', Shanghai Scientific and Technological Publishing Co., Shanghai, 1977, p. 1167.
- [2] Y.-Q. Xiao, Y.-Y. Tu, Yao Xue Xue Bao 1984, 19, 909.
- [3] Y.-Q. Xiao, Y.-Y. Tu, Acta Bot. Sin. 1986, 28, 307.
- [4] X.-Y. Lin, S.-D. Zhang, Acta Chim. Sin. 1985, 43, 724.
- [5] J. Jakupovic, Z.-L. Chen, F. Bohlmann, Phytochemistry 1987, 26, 2777.

- [6] F.-R. Tian, L. Zhang, J.-K. Tian, W.-M. Zhou, Chin J. Med. Chem. 2008, 18, 362.
- [7] J. Wen, H. Shi, Z. Xu, H. Chang, C. Jia, K. Zan, Y. Jiang, P. Tu, J. Nat. Prod. 2010, 73, 67.
- [8] M. Stavri, K. T. Mathew, A. Gordon, S. D. Shnyder, R. A. Falconer, S. Gibbons, *Phytochemistry* 2008, 69, 1915.
- [9] O. Muraoka, M. Fujimoto, G. Tanabe, M. Kubo, T. Minematsu, H. Matsuda, T. Morikawa, I. Toguchida, M. Yoshikawa, *Bioorg. Med. Chem. Lett.* 2001, 11, 2217.
- [10] F. S. El-Feraly, Y. M. Chan, G. A. Capiton, R. W. Doskotch, E. H. Fairchild, J. Org. Chem. 1979, 44, 3952.
- [11] M. Abdel-Mogib, J. Jakupovic, A. M. Dawidar, M. A. Metwally, M. Abou-Elzahab, *Phytochemistry* 1989, 28, 3528.

Received January 11, 2010